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Exercise 1.4.3

Determine the equilibrium temperature distribution for a one-dimensional rod composed of two
different materials in perfect thermal contact at x = 1. For 0 < x < 1, there is one material
(cρ = 1, K0 = 1) with a constant source (Q = 1), whereas for the other 1 < x < 2, there are no
sources (Q = 0, cρ = 2, K0 = 2) (see Exercise 1.3.2) with u(0) = 0 and u(2) = 0.

Solution

The governing equation for the temperature in a one-dimensional rod with constant physical
properties and a heat source Q is the heat equation.

cρ
∂u

∂t
= K0

∂2u

∂x2
+Q

The heat equation applies to each segment of the rod.
∂u

∂t
=
∂2u

∂x2
+ 1, 0 < x < 1

2
∂u

∂t
= 2

∂2u

∂x2
, 1 < x < 2

The heat flux φ is defined as the rate of thermal energy flowing per unit area. According to
Fourier’s law of conduction, it is proportional to the temperature gradient.

φ = −K0(x)
∂u

∂x

If the two materials of the rod are in perfect thermal contact at x = 1, then the temperature is
not only continuous there,

lim
x→1−

u(x, t) = lim
x→1+

u(x, t), (1)

but also the rate of heat flowing from the left must be equal to the rate of heat flowing to the
right.

lim
x→1−

Aφ(x, t) = lim
x→1+

Aφ(x, t)

Using Fourier’s law for the flux, this boundary condition becomes

lim
x→1−

−AK0(x)
∂u

∂x
= lim

x→1+
−AK0(x)

∂u

∂x
.

The rod has constant cross-sectional area A in both materials but different thermal
conductivities. Dividing both sides by −A, the second boundary condition is thus

lim
x→1−

(1)
∂u

∂x
= lim

x→1+
(2)

∂u

∂x
. (2)

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now. 

0 =
d2u

dx2
+ 1, 0 < x < 1

0 = 2
d2u

dx2
, 1 < x < 2
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The general solution to both ODEs can be obtained by integrating both sides with respect to x
twice. After the first integration, we get

du

dx
= −x+ C1, 0 < x < 1

du

dx
= C2, 1 < x < 2

.

Apply equation (2) here to determine one of the constants.

(1)(−1 + C1) = (2)C2

As a result, C2 = (−1 + C1)/2. 
du

dx
= −x+ C1, 0 < x < 1

du

dx
=
−1 + C1

2
, 1 < x < 2

Integrate both sides with respect to x once more.
u(x) = −x

2

2
+ C1x+ C3, 0 < x < 1

u(x) =
−1 + C1

2
x+ C4, 1 < x < 2

Apply the boundary conditions, u(0) = 0 and u(2) = 0, here to determine two more constants.

u(0) = C3 = 0

u(2) =
−1 + C1

2
· 2 + C4 = 0

Solving the second equation for C4 gives C4 = 1− C1.
u(x) = −x

2

2
+ C1x, 0 < x < 1

u(x) =
−1 + C1

2
x+ (1− C1), 1 < x < 2

Use equation (1) to determine the last constant.

−1

2
+ C1 =

−1 + C1

2
+ (1− C1) → C1 =

2

3

Plugging in C1 = 2/3 gives the solution for u(x). Therefore,

u(x) =


−x

2

2
+

2

3
x, 0 < x < 1

−1

6
x+

1

3
, 1 < x < 2

.
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