Exercise 1.4.3

Determine the equilibrium temperature distribution for a one-dimensional rod composed of two different materials in perfect thermal contact at $x=1$. For $0<x<1$, there is one material ($c \rho=1, K_{0}=1$) with a constant source $(Q=1)$, whereas for the other $1<x<2$, there are no sources $\left(Q=0, c \rho=2, K_{0}=2\right)$ (see Exercise 1.3.2) with $u(0)=0$ and $u(2)=0$.

Solution

The governing equation for the temperature in a one-dimensional rod with constant physical properties and a heat source Q is the heat equation.

$$
c \rho \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}}+Q
$$

The heat equation applies to each segment of the rod.

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}}+1, & & 0<x<1 \\
2 \frac{\partial u}{\partial t} & =2 \frac{\partial^{2} u}{\partial x^{2}}, & & 1<x<2
\end{aligned}\right.
$$

The heat flux ϕ is defined as the rate of thermal energy flowing per unit area. According to Fourier's law of conduction, it is proportional to the temperature gradient.

$$
\phi=-K_{0}(x) \frac{\partial u}{\partial x}
$$

If the two materials of the rod are in perfect thermal contact at $x=1$, then the temperature is not only continuous there,

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}} u(x, t)=\lim _{x \rightarrow 1^{+}} u(x, t) \tag{1}
\end{equation*}
$$

but also the rate of heat flowing from the left must be equal to the rate of heat flowing to the right.

$$
\lim _{x \rightarrow 1^{-}} A \phi(x, t)=\lim _{x \rightarrow 1^{+}} A \phi(x, t)
$$

Using Fourier's law for the flux, this boundary condition becomes

$$
\lim _{x \rightarrow 1^{-}}-A K_{0}(x) \frac{\partial u}{\partial x}=\lim _{x \rightarrow 1^{+}}-A K_{0}(x) \frac{\partial u}{\partial x}
$$

The rod has constant cross-sectional area A in both materials but different thermal conductivities. Dividing both sides by $-A$, the second boundary condition is thus

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}}(1) \frac{\partial u}{\partial x}=\lim _{x \rightarrow 1^{+}}(2) \frac{\partial u}{\partial x} . \tag{2}
\end{equation*}
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
\left\{\begin{array}{lll}
0=\frac{d^{2} u}{d x^{2}}+1, & 0<x<1 \\
0 & =2 \frac{d^{2} u}{d x^{2}}, & \\
1<x<2
\end{array}\right.
$$

The general solution to both ODEs can be obtained by integrating both sides with respect to x twice. After the first integration, we get

$$
\left\{\begin{array}{lll}
\frac{d u}{d x} & =-x+C_{1}, & \\
0<x<1 \\
\frac{d u}{d x} & =C_{2}, &
\end{array}\right.
$$

Apply equation (2) here to determine one of the constants.

$$
(1)\left(-1+C_{1}\right)=(2) C_{2}
$$

As a result, $C_{2}=\left(-1+C_{1}\right) / 2$.

$$
\begin{cases}\frac{d u}{d x}=-x+C_{1}, & 0<x<1 \\ \frac{d u}{d x}=\frac{-1+C_{1}}{2}, & 1<x<2\end{cases}
$$

Integrate both sides with respect to x once more.

$$
\begin{cases}u(x)=-\frac{x^{2}}{2}+C_{1} x+C_{3}, & 0<x<1 \\ u(x)=\frac{-1+C_{1}}{2} x+C_{4}, & 1<x<2\end{cases}
$$

Apply the boundary conditions, $u(0)=0$ and $u(2)=0$, here to determine two more constants.

$$
\begin{aligned}
& u(0)=C_{3}=0 \\
& u(2)=\frac{-1+C_{1}}{2} \cdot 2+C_{4}=0
\end{aligned}
$$

Solving the second equation for C_{4} gives $C_{4}=1-C_{1}$.

$$
\begin{cases}u(x)=-\frac{x^{2}}{2}+C_{1} x, & 0<x<1 \\ u(x)=\frac{-1+C_{1}}{2} x+\left(1-C_{1}\right), & 1<x<2\end{cases}
$$

Use equation (1) to determine the last constant.

$$
-\frac{1}{2}+C_{1}=\frac{-1+C_{1}}{2}+\left(1-C_{1}\right) \quad \rightarrow \quad C_{1}=\frac{2}{3}
$$

Plugging in $C_{1}=2 / 3$ gives the solution for $u(x)$. Therefore,

$$
u(x)= \begin{cases}-\frac{x^{2}}{2}+\frac{2}{3} x, & 0<x<1 \\ -\frac{1}{6} x+\frac{1}{3}, & 1<x<2\end{cases}
$$

