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Exercise 1.4.3

Determine the equilibrium temperature distribution for a one-dimensional rod composed of two
different materials in perfect thermal contact at x = 1. For 0 < x < 1, there is one material

(cp =1, Ky =1) with a constant source (Q = 1), whereas for the other 1 < z < 2, there are no
sources (Q =0, cp =2, Ky =2) (see Exercise 1.3.2) with «(0) = 0 and u(2) = 0.

Solution

The governing equation for the temperature in a one-dimensional rod with constant physical
properties and a heat source @ is the heat equation.
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The heat equation applies to each segment of the rod.
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The heat flux ¢ is defined as the rate of thermal energy flowing per unit area. According to
Fourier’s law of conduction, it is proportional to the temperature gradient.
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If the two materials of the rod are in perfect thermal contact at x = 1, then the temperature is
not only continuous there,
lim w(z,t) = lim wu(z,t), (1)
r—1— r—1t
but also the rate of heat flowing from the left must be equal to the rate of heat flowing to the
right.
lim A¢(x,t) = lim A¢(z,t)
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Using Fourier’s law for the flux, this boundary condition becomes
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The rod has constant cross-sectional area A in both materials but different thermal
conductivities. Dividing both sides by —A, the second boundary condition is thus
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At equilibrium the temperature does not change in time, so du/0t vanishes. wu is only a function
of = now.
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The general solution to both ODEs can be obtained by integrating both sides with respect to z
twice. After the first integration, we get
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Apply equation (2) here to determine one of the constants.
(M(=1+C1) = (2)C

As aresult, Cy = (-1 + C1)/2.
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Integrate both sides with respect to x once more.
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u(z) =
Apply the boundary conditions, u(0) = 0 and u(2) = 0, here to determine two more constants.

u(0) =C3=0
-1+ Cq
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Solving the second equation for Cy gives Cy =1 — Cf.
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Use equation (1) to determine the last constant.
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Plugging in C = 2/3 gives the solution for u(z). Therefore,

u(z) = 12
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